Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation.
نویسندگان
چکیده
BACKGROUND Abnormal Ca2+ handling may contribute to impaired atrial contractility and arrhythmogenesis in human chronic atrial fibrillation (cAF). Here, we assessed the phosphorylation levels of key proteins involved in altered Ca2+ handling and contractility in cAF patients. METHODS AND RESULTS Total and phosphorylation levels of Ca2+-handling and myofilament proteins were analyzed by Western blotting in right atrial appendages of 49 patients in sinus rhythm and 52 cAF patients. We found a higher total activity of type 1 (PP1) and type 2A phosphatases in cAF, which was associated with inhomogeneous changes of protein phosphorylation in the cellular compartments, ie, lower protein kinase A (PKA) phosphorylation of myosin binding protein-C (Ser-282 site) at the thick myofilaments but preserved PKA phosphorylation of troponin I at the thin myofilaments and enhanced PKA (Ser-16 site) and Ca2+-calmodulin protein kinase (Thr-17 site) phosphorylation of phospholamban. PP1 activity at sarcoplasmic reticulum is controlled by inhibitor-1 (I-1), which blocks PP1 in its PKA-phosphorylated form only. In cAF, the ratio of Thr-35-phosphorylated to total I-1 was 10-fold higher, which suggests that the enhanced phosphorylation of phospholamban may result from a stronger PP1 inhibition by PKA-hyperphosphorylated (activated) I-1. CONCLUSIONS Altered Ca2+ handling in cAF is associated with impaired phosphorylation of myosin binding protein-C, which may contribute to the contractile dysfunction after cardioversion. The hyperphosphorylation of phospholamban probably results from enhanced inhibition of sarcoplasmic PP1 by hyperphosphorylated I-1 and may reinforce the leakiness of ryanodine channels in cAF. Restoration of sarcoplasmic reticulum-associated PP1 function may represent a new therapeutic option for treatment of atrial fibrillation.
منابع مشابه
Molecular Determinants of Altered Ca Handling in Human Chronic Atrial Fibrillation
Background—Abnormal Ca handling may contribute to impaired atrial contractility and arrhythmogenesis in human chronic atrial fibrillation (cAF). Here, we assessed the phosphorylation levels of key proteins involved in altered Ca handling and contractility in cAF patients. Methods and Results—Total and phosphorylation levels of Ca -handling and myofilament proteins were analyzed by Western blott...
متن کاملAltered Excitation-Contraction Coupling in Human Chronic Atrial Fibrillation.
This review focuses on the (mal)adaptive processes in atrial excitation-contraction coupling occurring in patients with chronic atrial fibrillation. Cellular remodeling includes shortening of the atrial action potential duration and effective refractory period, depressed intracellular Ca2+ transient, and reduced myocyte contractility. Here we summarize the current knowledge of the ionic bases u...
متن کاملSPOTLIGHT REVIEW Alterations of atrial Ca handling as cause and consequence of atrial fibrillation
Atrial fibrillation (AF) is the most prevalent sustained arrhythmia. As the most important risk factor for embolic stroke, AF is associated with a high morbidity and mortality. Despite decades of research, successful (pharmacological and interventional) ‘ablation’ of the arrhythmia remains challenging. AF is characterized by a diverse aetiology, including heart failure, hypertension, and valvul...
متن کاملCellular bases for human atrial fibrillation
Atrial fibrillation (AF) causes substantial morbidity and mortality. It may be triggered and sustained by either reentrant or nonreentrant electrical activity. Human atrial cellular refractory period is shortened in chronic AF, likely aiding reentry. The ionic and molecular mechanisms are not fully understood and may include increased inward rectifier K(+) current and altered Ca(2+) handling. H...
متن کاملCellular mechanisms of atrial contractile dysfunction caused by sustained atrial tachycardia.
BACKGROUND Transient atrial contractile dysfunction ("atrial stunning") follows conversion of atrial fibrillation (AF) to sinus rhythm and has significant clinical implications; however, the underlying mechanisms are poorly understood. We investigated the hypothesis that rapid atrial activation (as during AF) impairs cellular contractility and affects cellular Ca2+ handling. METHODS AND RESUL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 114 7 شماره
صفحات -
تاریخ انتشار 2006